Computer Integrated Manufacturing (CIM)

- Instructor
- Dr Haris Aziz
- Engineer Zaheer Ahmad
- TA
- Engineer Shoaib Sarfraz

1 Basics and Introduction to Manufacturing
2 Introduction to CIM
3 Design and Analysis of CIM
4 Design and Analysis of CIM: Conveyor Systems
5 Problems/ Discussion/Review
6 Design and Analysis of CIM: Automated Storage \& Retrieval System
7 Design and Analysis of CIM: Automated Guided Vehicles
8 Review Period/Mid Term Exam
9 Design and Analysis of CIM: Numerical Control
10 Design and Analysis of CIM: Computerized Numerical Control
11 CIM Justification Criteria
12 Business Structure: Concurrent Engineering
13 Structure Characteristics: Process Planning Issues
14 System Integration of CIM and Cost Effective Solutions
15 Mini Project ppts
16 Mini Project ppts

Marks distribution:

Mid Term Examination 20
Home works/Assignments 08
Quiz 12
Laboratory Sessions 12
Term Project 08
Final Exam 40
Total marks 100
Text book:

Introduction to Manufacturing Processes, M. P. Groover, Wiley 2012
-- Manufacturing Processes for Engineering Materials, Serope Kalpakjian, Steven R Schmid, fifth edition, Pearson 2007
-- Principles of Metal manufacturing by Beddoes B

Assigned Week	Assignment	Date Due	Corrected with solution
HOME WORKS			
03	Assignment 1	Week 4	Week 5
05	Assignment 2	Week 6	Week 7
08	Assignment 3	Week 9	Week 10
12	Assignment 4	Week 13	Week 14
QUIZZES			
Week Taken	Title	Corrected with solution	
04	Quiz 1	Week 5	
06	Quiz 2	Week 7	
09	Quiz 3	Week 10	
13	Quiz 4	Week 14	
PROJECT			
02	Lab project will be given		

Overview of Manufacturing

I. Manufacturing Operations
2. Manufacturing Models (mathematical)

I. Manufacturing Operations

I. Manufacturing Industries and Products
2. Manufacturing Operations
3. Production Facilities
4. Product/Production Relationships

Definition (Technological)

Application of physical and chemical processes to alter the geometry, properties, and/or appearance of a given starting material to make parts or products

- Manufacturing also includes the joining of multiple parts to make assembled products

Definition (Economic)

Transformation of materials into items of greater value by means of one or more processing and/or assembly operations

- Manufacturing adds value to the material
- Converting iron ore to steel adds value
- Refining petroleum into plastic adds value

Classification of Industries

1. Primary industries - cultivate and exploit natural resources

- Examples: agriculture, mining

2. Secondary industries - convert output of primary industries into products

- Examples: manufacturing, power generation, construction

3. Tertiary industries - service sector

- Examples: banking, education, government, legal services, retail trade, transportation

Manufacturing Industries

Classifications

- Process industries, e.g., chemicals, petroleum, basic metals, foods and beverages, power generation
- Continuous production
-Batch production
- Discrete product (and part) industries, e.g., cars, aircraft, appliances, machinery, and their component parts
- Continuous production
-Batch production

Process \& Discrete Parts

Continuous Production

Batch Production

Manufacturing Operations

- There are certain basic activities that must be carried out in a factory to convert raw materials into finished products
- For discrete products:
I. Processing and assembly operations

2. Material handling
3. Inspection and testing
4. Coordination and control

Classification of Manufacturing Process

Processing Operations

- Shaping operations
I. Solidification processes

2. Particulate processing
3. Deformation processes
4. Material removal processes

- Property-enhancing operations (heat treatments)
- Surface processing operations
- Cleaning and surface treatments
- Coating and thin-film deposition

Assembling Operations

- Joining processes
-Welding
-Brazing and soldering
- Adhesive bonding
- Mechanical assembly
- Threaded fasteners (e.g., bolts and nuts, screws)
-Rivets
- Interference fits (e.g., press fitting, shrink fits)
-Other

Material Handling

- Material transport
- Vehicles, e.g., forklift trucks, AGVs, monorails
- Conveyors
- Hoists and cranes
- Storage systems
- Unitizing equipment
- Automatic identification and data
capture
- Bar codes
- RFID

Time Spent in Material Handling

Inspection \& Testing

Inspection - examination of the product and its components to determine whether they conform to design specifications

- Inspection for variables - measuring
- Inspection of attributes - gaging

Testing - observing the product (or part, material, subassembly) during actual operation or under conditions that might occur during operation

Coordination \& Control

- Regulation of the individual processing and assembly operations
- Process control
- Quality control
- Management of plant level activities
- Production planning and control
- Quality control

Production Facilities

- A manufacturing company attempts to organize its facilities in the most efficient way to serve the particular mission of the plant
- Certain types of plants are recognized as the most appropriate way to organize for a given type of manufacturing
The most appropriate type depends on:
- Types of products made
- Production quantity
- Product variety

Production Quantity

Number of units of a given part or product produced annually by the plant

- Three quantity ranges:
I. Low production - I to 100 units

2. Medium production -100 to 10,000 units
3. High production $-10,000$ to millions of units

Product Variety

Refers to the number of different product or part designs or types produced in the plant

- Inverse relationship between production quantity and product variety in factory operations
- Hard product variety - products differ greatly
- Few common components in an assembly
-Soft product variety - small differences between products

Relationship b/w Production Quantity \& Product Variety

Low Production Quantity

Job shop - makes low quantities of specialized and customized products

- Products are typically complex (e.g., specialized machinery, prototypes, space capsules)
- Equipment is general purpose
- Plant layouts:
-Fixed position
-Process layout

Fixed Position Layout

Process Layout

Medium Production Quantities

Batch production - A batch of a given product is produced, and then the facility is changed over to produce another product

- Changeover takes time - setup time
- Typical layout - process layout
- Hard product variety

2. Cellular Manufacturing - A mixture of products is made without significant changeover time between products

- Typical layout - cellular layout
- Soft product variety

Cellular Layout

High Production

I. Quantity production - Equipment is dedicated to the manufacture of one product

- Standard machines tooled for high production (e.g., stamping presses, molding machines)
- Typical layout - process layout

2. Flow line production - Multiple workstations arranged in sequence

- Product requires multiple processing or assembly steps
- Product layout is most common

Product Layout

Relationship b/w Plant layout and Type of Facility

Product/Production Relationship

- Total number of product units $=Q_{f}=\sum_{j=1}^{P} Q_{j}$
- Product variety
- Hard product variety = differences between products
-Soft product variety = differences between models of products
- Product and part complexity
- Product complexity $\boldsymbol{n}_{\boldsymbol{p}}=$ number of parts in product
- Part complexity $\boldsymbol{n}_{\mathbf{o}}=$ number of operations per part

Factory Operations Models

Simplified for purposes of conceptualization:

- Total number of product units $Q_{f}=P Q$
- Total number of parts produced

$$
n_{p f}=P Q n_{p}
$$

- Total number of operations $n_{\text {of }}=P Q n_{D} n_{0}$

Problem I

The ABC Company is planning a new product line and will build a new plant to manufacture the parts for a new product line. The product line will include 50 different models. Annual production of each model is expected to be 1000 units. Each product will be assembled of 400 components. All processing of parts will be accomplished in one factory. There are an average of 6 processing steps required to produce each component, and each processing step takes 1.0 minute (includes an allowance for setup time and part handling). All processing operations are performed at workstations, each of which includes a production machine and a human worker. If each workstation requires a floor space of $250 \mathrm{ft}^{2}$, and the factory operates one shift ($2000 \mathrm{hr} / \mathrm{yr}$), determine (a) how many production operations, (b) how much floor-space, and (c) how many workers will be required in the plant.

Solution

(a) $n_{\text {of }}=P Q n_{p} n_{o}=50(1000)(400)(6)=\mathbf{1 2 0 , 0 0 0 , 0 0 0}$
operations in the factory per year.
(c) Total operation time $=\left(120 \times 10^{6}\right.$ ops)(1 min./($60 \mathrm{~min} . / \mathrm{hr})$) $=2,000,000 \mathrm{hr} / \mathrm{yr}$.
At 2000 hours/yr per worker, $w=\frac{2,000,000 \mathrm{hr} / \mathrm{yr}}{2000 \mathrm{hr} / \text { wor ker }}$
= 1000 workers.
(b) Number of workstations $n=w=1000$.Total floor-space $=(1000$ stations $)\left(250 \mathrm{ft}^{2} /\right.$ station $)=$ 250,000 ft ${ }^{\mathbf{2}}$

Limitations and Capabilities of Manufacturing Plants

Manufacturing capability - the technical and physical limitations of a manufacturing firm and each of its plants

- Three dimensions of manufacturing capability:
I. Technological processing capability the available set of manufacturing processes

2. Physical size and weight of product
3. Production capacity (plant capacity) production quantity that can be made in a given time

2. Manufacturing Models (Mathematical) and Metrics

Models Include

I. Mathematical Models of Production Performance
2. Manufacturing Costs

Production Concepts and Mathematical Models

- Production rate R_{p}
- Production capacity PC
- Utilization U
- Availability A
- Manufacturing lead time MLT
- Work-in-progress WIP

Operation Cycle Time

Typical cycle time for a production operation:

$$
T_{c}=T_{o}+T_{h}+T_{t h}
$$

where $T_{c}=$ cycle time, $T_{o}=$ processing time for the operation, $T_{h}=$ handling time (e.g., loading and unloading the production machine), and $T_{\text {th }}=$ tool handling time (e.g., time to change tools)

Production Rate

Batch production: batch time $T_{b}=T_{\text {su }}+Q T_{c}$
Average production time per work unit $T_{p}=T_{b} / Q$
Production rate $R_{p}=I / T_{p}$
Job shop production:

$$
\text { For } Q=1, T_{p}=T_{s u}+T_{c}
$$

For quantity high production:

$$
R_{p}=R_{c}=60 / T_{p} \text { since } T_{s u} / Q \rightarrow 0
$$

For flow line production

$$
T_{c}=T_{r}+\operatorname{Max} T_{o} \text { and } R_{c}=60 / T_{c}
$$

Production Capacity

Plant capacity for facility in which parts are made in one operation ($n_{0}=1$):

$$
P C_{w}=n S_{w} H_{s} R_{p}
$$

where $P C_{w}=$ weekly plant capacity, units/wk Plant capacity for facility in which parts require multiple operations ($n_{0}>1$):

$$
P C_{w}=\frac{n S_{w} H_{s} R_{p}}{n_{o}}
$$

where $n_{0}=$ number of operations in the routing

Utilization \& Availability

$$
\text { Utilization: } U=\frac{Q}{P C}
$$

$$
\text { where } Q=\text { quantity actually produced, and } P C
$$

= plant capacity

Availability: $A=\frac{M T B F-M T T R}{M T B F}$
where $M T B F=$ mean time between failures, and $M T T R=$ mean time to repair

Availability MTBF and MTTR Defined

Manufacturing Lead Time

$M L T=n_{0}\left(T_{s u}+Q T_{c}+T_{n o}\right)$
where $M L T$ = manufacturing lead time, n_{0}
$=$ number of operations, $T_{\text {su }}=$ setup time, $Q=$ batch quantity, T_{c} cycle time per part, and $T_{n o}=$ non-operation time

Work In Process

$$
W I P=\frac{A U(P C)(M L T)}{S_{w} H_{s h}}
$$

where WIP = work-in-process, pc; $A=$ availability, $U=$ utilization, $P C=$ plant capacity, pc/wk; MLT = manufacturing lead time, hr; $S_{w}=$ shifts per week, $H_{s h}=$ hours per shift, hr/shift

Problem 2

The average part produced in a certain batch manufacturing plant must be processed sequentially through six machines on average. Twenty (20) new batches of parts are launched each week. Average operation time $=6 \mathrm{~min}$., average setup time $=5$ hours, average batch size $=25$ parts, and average nonoperation time per batch $=10 \mathrm{hr} /$ machine. There are $\underline{18}$ machines in the plant working in parallel. Each of the machines can be set up for any type of job processed in the plant. The plant operates an average of 70 production hours per week. Scrap rate is negligible.
Determine (a) manufacturing lead time for an average part, (b) plant capacity, (c) plant utilization. (d) How would you expect the non-operation time to be affected by the plant utilization?

Solution

(a) $M L T=n_{o}\left(T_{s u}+Q T_{c}+T_{\text {no }}\right)$
$M L T=6(5+25(0.1)+10)=105 \mathbf{h r}$
(b) $T_{b}=T_{s u}+Q T_{c}$
$T_{p}=(5+25 \times 0.1) / 25=0.30 \mathrm{hr} / \mathrm{pc}, R_{p}=3.333 \mathrm{pc} / \mathrm{hr}$.
$P C_{w}=n S_{w} H_{s} R_{p}$
$P C=70(18)(3.333) / 6=700 \mathbf{~ p c} /$ week
(c) Parts launched per week $=20 \times 25=500 \mathrm{pc} /$ week.

$$
\mathrm{U}=\frac{Q}{P C}
$$

Utilization $U=500 / 700=0.7143=71.43 \%$
(d) As utilization increases towards 100%, we would expect the non-operation time to increase. When the workload in the shop grows, the shop becomes busier, but it usually takes longer to get the jobs out. As utilization decreases, we would expect the non-operation time to decrease

Costs of Manufacturing Operations

- Two major categories of manufacturing costs:
II. Fixed costs - remain constant for any output level

2. Variable costs - vary in proportion to production output level

- Adding fixed and variable costs

$$
T C=F C+V C(Q)
$$

where $T C=$ total costs, $F C=$ fixed costs (e.g., building, equipment, taxes), $V C=$ variable costs (e.g., labor, materials, utilities), $Q=$ output level.

Fixed \& Variable Costs

Manufacturing Costs

- Alternative classification of manufacturing costs:
I. Direct labor - wages and benefits paid to workers

2. Materials - costs of raw materials
3. Overhead - all of the other expenses associated with running the manufacturing firm

- Factory overhead
- Corporate overhead

Typical manufacturing Cost

Factory Overheads

Factory overhead rate:

$$
F O H R=\frac{F O H C}{D L C}
$$

Corporate overhead rate:

$$
C O H R=\frac{C O H C}{D L C}
$$

where $D L C=$ direct labor costs

Problem 3 Determining Overhead Rate

Suppose that all costs have been compiled for a certain manufacturing firm for last year. The summary is shown in the table below. The company operates two different manufacturing plants plus a corporate headquarters. Determine: (a) the factory overhead rate for each plant and (b) the corporate overhead rate. These rates will be used by the firm in the following year.

Expense				
Category	Plant 1(\$)	Plant 2 (\$)	Corporate Headquarters (\#)	Totals (\$)
Direct labor	800,000	400,000		$1,200,000$
Materials	$2,500,000$	$1,500,000$		$4,000,000$
Factory expense	$2,000,000$	$1,100,000$	$7,200,000$	$7,200,000$
Corporate expense			$3,000,000$	$15,500,000$
Totals	$5,300,000$	$3,000,000$	3	

Problem 3 Solution

(a) A separate factory overhead rate must be determined for each plant. For plant 1, we have:

$$
\mathrm{FOHR}_{1}=\frac{\$ 2,000,000}{\$ 800,000}=2.5=250 \%
$$

For plant 2,

$$
\mathrm{FOHR}_{2}=\frac{\$ 1,100,000}{\$ 400,000}=2.75=275 \%
$$

(b) The corporate overhead rate is based on the total labor cost at both plants.

$$
\mathrm{COHR}=\frac{\$ 7,200,000}{\$ 1,200,000}=6.0=600 \%
$$

Problem ds Establish Selling Price

A customer order of 50 parts is to be processed through plant 1 of the previous example. Raw materials and tooling are supplied by the customer. The total time for processing the parts (including setup and other direct labor) is 100 hr . Direct labor cost is $\$ 10.00 / \mathrm{hr}$. The factory overhead rate is 250% and the corporate overhead rate is 600%. Compute the cost of the job.

Solution: (a) The direct labor cost for the job is $(100 \mathrm{hr})(\$ 10.00 / \mathrm{hr})=\$ 1000$.
(b) The allocated factory overhead chatge, at 250% of direct labor, is $(\$ 1000)(2.50)=\$ 2500$.
(c) The allocated corporate overhead charge, at 600% of direct labor, is $(\$ 1000)(6.00)=\$ 6000$.

Interpretation: (a) The direct labor cost of the job, representing actual cash spent on the customer's order $=\$ 1000$.(b) The total factory cost of the job, including allocated factory overhead $=\$ 1000+\$ 2500=\$ 3500$. (c) The total cost of the job including corporate overhead $=\$ 3500+\$ 6000=\$ 9500$. To price the job for the customer and to earn a profit over the long run on jobs like this, the price would have to be greater than $\$ 9500$. For example, if the company uses a 10% mark-up, the price quoted to the customer would be $(1,10)(\$ 9500)=\$ 10,450$.

Cost of Equipment Usage

Hourly cost of worker-machine system:

$$
C_{o}=C_{L}\left(I+F O H R_{L}\right)+C_{m}\left(I+F O H R_{m}\right)
$$

where $C_{o}=$ hourly rate, $\$ / \mathrm{hr} ; C_{L}=$ labor rate, $\$ / \mathrm{hr} ; \mathrm{FOHR}_{L}=$ labor factory
overhead rate, $C_{m}=$ machine rate, $\$ / \mathrm{hr}$; $F O H R_{m}=$ machine factory overhead rate

Problem 5 凡ourly Cost of Worls Center

The following data are given: direct labor rate $=\$ 10.00 / \mathrm{hr}$; applicable factory overhead rate on labor $=60 \%$;capital investment in machine $=\$ 100,000$; service life of the machine $=8 \mathrm{yr}$; rate of return $=20 \%$: salvage value in $8 \mathrm{yr}=0$; and applicable factory overhead rate on machine $=50 \%$. The work center will be operated one 8 -hr shift, $250 \mathrm{day} / \mathrm{yr}$. Determine the appropriate hourly rate for the work center.

$$
\text { Labor cost per hour }=C_{L}\left(1+\mathrm{FOHR}_{L}\right)=\$ 10.00(1+0.60)=\$ 16.00 / \mathrm{hr}
$$

The investment cost of the machine must be annualized, using an 8 -yr service life and a rate of return $=20 \%$. First we compute the capital recovery factor:

$$
(A / P, 20 \%, 8)=\frac{0.20(1+0.20)^{8}}{(1+0.20)^{8}-1}=\frac{0.20(4.2998)}{4.2998-1}=0.2606
$$

Now the uniform annual cost for the $\$ 100,000$ initial cost can be determined:

$$
\mathrm{UAC}=\$ 100,000(A / P, 20 \%, 8)=100,000(0.2606)-\$ 26,060.00 / \mathrm{yr}
$$

The number of hours per year $=(8 \mathrm{hr} /$ day $)(250$ day $/ \mathrm{yr})=2000 \mathrm{hr} / \mathrm{yr}$. Dividing this into UAC gives $26,060 / 2000=\$ 13.03 /$ hr. Then applying the factory overhead rate, we have

$$
C_{m}\left(1+\mathrm{FOHR}_{m}\right)=\$ 13.03(1+0.50)=\$ 19.55 / \mathrm{hr}
$$

Total cost rate is

$$
C_{o}=16.00+19.55=\$ 35.55 / \mathrm{hr}
$$

Solve problems for better understanding of the basics of Manufacturing System
 For specific problems TA will help

